Affinity for phosphatidylinositol 4,5-bisphosphate determines muscarinic agonist sensitivity of Kv7 K+ channels
نویسندگان
چکیده
Kv7 K(+)-channel subunits differ in their apparent affinity for PIP(2) and are differentially expressed in nerve, muscle, and epithelia in accord with their physiological roles in those tissues. To investigate how PIP(2) affinity affects the response to physiological stimuli such as receptor stimulation, we exposed homomeric and heteromeric Kv7.2, 7.3, and 7.4 channels to a range of concentrations of the muscarinic receptor agonist oxotremorine-M (oxo-M) in a heterologous expression system. Activation of M(1) receptors by oxo-M leads to PIP(2) depletion through G(q) and phospholipase C (PLC). Chinese hamster ovary cells were transiently transfected with Kv7 subunits and M(1) receptors and studied under perforated-patch voltage clamp. For Kv7.2/7.3 heteromers, the EC(50) for current suppression was 0.44 +/- 0.08 microM, and the maximal inhibition (Inhib(max)) was 74 +/- 3% (n = 5-7). When tonic PIP(2) abundance was increased by overexpression of PIP 5-kinase, the EC(50) was shifted threefold to the right (1.2 +/- 0.1 microM), but without a significant change in Inhib(max) (73 +/- 4%, n = 5). To investigate the muscarinic sensitivity of Kv7.3 homomers, we used the A315T pore mutant (Kv7.3(T)) that increases whole-cell currents by 30-fold without any change in apparent PIP(2) affinity. Kv7.3(T) currents had a slightly right-shifted EC(50) as compared with Kv7.2/7.3 heteromers (1.0 +/- 0.8 microM) and a strongly reduced Inhib(max) (39 +/- 3%). In contrast, the dose-response curve of homomeric Kv7.4 channels was shifted considerably to the left (66 +/- 8 nM), and Inhib(max) was slightly increased (81 +/- 6%, n = 3-4). We then studied several Kv7.2 mutants with altered apparent affinities for PIP(2) by coexpressing them with Kv7.3(T) subunits to boost current amplitudes. For the lower affinity (Kv7.2 (R463Q)/Kv7.3(T)) or higher affinity (Kv7.2 (R463E)/Kv7.3(T)) channels, the EC(50) and Inhib(max) were similar to Kv7.4 or Kv7.3(T) homomers (0.12 +/- 0.08 microM and 79 +/- 6% [n = 3-4] and 0.58 +/- 0.07 microM and 27 +/- 3% [n = 3-4], respectively). The very low-affinity Kv7.2 (R452E, R459E, and R461E) triple mutant was also coexpressed with Kv7.3(T). The resulting heteromer displayed a very low EC(50) for inhibition (32 +/- 8 nM) and a slightly increased Inhib(max) (83 +/- 3%, n = 3-4). We then constructed a cellular model that incorporates PLC activation by oxo-M, PIP(2) hydrolysis, PIP(2) binding to Kv7-channel subunits, and K(+) current through Kv7 tetramers. We were able to fully reproduce our data and extract a consistent set of PIP(2) affinities.
منابع مشابه
Regulation of Kv7 (KCNQ) K+ channel open probability by phosphatidylinositol 4,5-bisphosphate.
Voltage-gated Kv7 (KCNQ) channels underlie important K+ currents, including the neuronal M current, and are thought to be sensitive to membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2 depletion to underlie muscarinic receptor inhibition. We studied regulation of Kv7.2-7.4 channels by PIP2 in Chinese hamster ovary (CHO) cells using single-channel and whole-cell patch clamp and bioc...
متن کاملProtein kinase C inhibits ROMK1 channel activity via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism.
The activity of apical K(+) channels in cortical collecting duct (CCD) is stimulated and inhibited by protein kinase A (PKA) and C (PKC), respectively. Direct interaction between phosphatidylinositol 4,5-bisphosphate (PIP(2)) and the cloned CCD K(+) channel, ROMK1, is critical for channel opening. We have found previously that phosphorylation of ROMK1 by PKA increases affinity of the channel fo...
متن کاملPhosphorylation regulates the sensitivity of voltage‐gated Kv7.2 channels towards phosphatidylinositol‐4,5‐bisphosphate
KEY POINTS Phosphatidylinositol-4,5-bisphosphate (PIP2 ) is a key regulator of many membrane proteins, including voltage-gated Kv7.2 channels. In this study, we identified the residues in five phosphorylation sites and their corresponding protein kinases, the former being clustered within one of four putative PIP2 -binding domains in Kv7.2. Dephosphorylation of these residues reduced the sensit...
متن کاملProbing the regulation of M (Kv7) potassium channels in intact neurons with membrane-targeted peptides.
M-type (Kv7) potassium channels are closed by Gq/11 G-protein-coupled receptors. Several membrane- or channel-associated molecules have been suggested to contribute to this effect, including depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) and activation of Ca2+/calmodulin and protein kinase C. To facilitate further study of these pathways in intact neurons, we have devised novel membr...
متن کاملRecovery from Muscarinic Modulation of M Current Channels Requires Phosphatidylinositol 4,5-Bisphosphate Synthesis
Suppression of M current channels by muscarinic receptors enhances neuronal excitability. Little is known about the molecular mechanism of this inhibition except the requirement for a specific G protein and the involvement of an unidentified diffusible second messenger. We demonstrate here that intracellular ATP is required for recovery of KCNQ2/KCNQ3 current from muscarinic suppression, with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 134 شماره
صفحات -
تاریخ انتشار 2009